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sured values for DNA chains (of 367, 762, 1010, 2311 base pairs)
shows excellent agreement as well. This lends confidence to the

A carefully parameterized and tested simulation procedure for
predictive ability of our model and sets the groundwork for further

studying the dynamic properties of long linear DNA, based on a
work on circular DNA. We conclude with results of such a predictive

representation that combines features of both wormlike-chain and
measurement, the autocorrelation time, for the end-to-end distance

bead models, is presented. Our goals are to verify the model param-
and the bending angle as a function of DNA length. Rotational

eters and protocols with respect to all relevant experimental data
diffusion measurements for different DNA lengths (300 to 2311 base

and equilibrium simulations, to choose the most efficient algo-
pairs) are also presented. Q 1997 Academic Press

rithms, and to test different approximations that increase the speed
of the computations. The energy of the linear model chain includes
stretching, bending, and electrostatic components. Beads are asso-

1. INTRODUCTION

ciated with each vertex of the chain in order to specify the hydrody-
namic properties of the DNA. The value of the stretching rigidity
constant is chosen to achieve a compromise between the efficiency
of the dynamic simulations (since the timestep depends on the

The large-scale dynamic motions of double helical DNAstretching constant) and realistic modeling of the DNA (i.e., small
are important for many biological processes, from protein/deviations of the input contour length); the bead hydrodynamic

radius is set to yield agreement with known values of the transla- DNA interactions to higher-order DNA folding and re-
tional diffusion coefficient. By comparing results from both a first- combination. Several approaches have been developed
and a second-order Brownian dynamics algorithm, we find that the during the past decade to model DNA dynamics on the
two schemes give reasonable accuracy for integration timesteps in

basis of low-resolution models [3, 4, 6, 7, 24, 29, 31, 32,the range 200–500 ps. However, the greater accuracy of the second-
35]. Such approaches allow simulation of slow motions inorder algorithm permits timesteps of 600 ps to be used for better

accuracy than the 300 ps used in the first-order method. We develop long DNA molecules that are not possible to capture with
a more efficient second-order algorithm for our model by eliminat- standard all-atom simulations, unfortunately limited to
ing the auxiliary calculations of the translational diffusion tensor several dozen residues. However, modeling slow motions
at each timestep. This treatment does not sacrifice accuracy and

in large DNA molecules remains a challenge. In particular,reduces the required CPU time by about 50%. We also show that
it is difficult to simulate slow processes in double-strandedan appropriate monitoring of the chain topology ensures essentially

no intrachain crossing. The model details are assessed by compar- supercoiled DNA where torsional rotation of the chain
ing simulation-generated equilibrium and dynamic properties with segments is important. This is a broad objective of the
results of Monte Carlo simulations for short linear DNA (300, 600 simulation protocol developed here. In this paper, we focus
base pairs) and with experimental results. Very good agreement is

on linear DNA. In a second work [20] we continue to treatobtained with Monte Carlo results for distributions of the end-to-
closed circular DNA, where additional terms are required,end distance, bond lengths, bond angles between adjacent links,

and translational diffusion measurements. Additionally, compari- and to study biological questions. In particular, our goals
son of translational diffusion coefficients with experimentally-mea- here are to verify the model parameters and protocols with

respect to all relevant experimental data and equilibrium
simulations, to choose the most efficient algorithms, and1 To whom correspondence should be addressed.
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to test different approximations to increase the speed of potential functions, chain representation, and propagation
algorithms. Such issues must be satisfactorily completedthe computations.

Our model is based on the classical discrete wormlike to ensure that there are no artifacts in later results. The
excellent agreement obtained with respect to availablechain and is close to the approach introduced by Allison

and McCammon [4]. It combines the wormlike chain fea- Monte Carlo, theoretical, and experimental data estab-
lishes a reliable and efficient protocol for dynamic simula-tures with those of a bead model, which has been used

extensively for polymer hydrodynamics. The working tions of long DNA. Extensions to circular DNA and to
site-juxtaposition studies have already been described inmodel accounts for two essential features of the double

helix: the bending potential and the electrostatic interac- the Ph.D. thesis of Jian [19], and will be published sepa-
rately [20].tion between chain segments. Electrostatic interactions are

not standard components of Brownian simulations [2, 6,
7]. Electrostatic contributions are significant for the con- 2. THE MODEL
formational properties of long DNA molecules, especially

Our energy model for linear DNA includes stretchingin compact topologically constrained circular DNA [21,
(Es), bending (Eb), and electrostatic (Ee) potentials. A28, 30, 33, 37]. An explicit electrostatic potential also offers
DNA molecule composed of m Kuhn statistical lengthsa computational advantage over a simple excluded-volume
(each Kuhn length is 300 base pairs) is modeled by N beadsterm since its smoothness allows the use of larger integra-
of radius a linked by N 2 1 virtual bonds. The equilibriumtion timesteps without force-discontinuity artifacts. An
‘‘bond length’’ (link), l0 , between beads is chosen accordingelectrostatic potential has recently been added [8] to the
to the salt concentration of the solution (see below); it isDNA model of Chirico and Langowski [7], but details are
thus related to the Debye length.lacking in that work, as well as a description of how differ-

The bond stretching energy, a computational device (re-ent salt concentrations are modeled. Our model also con-
straint), is expressed astains a stretching potential to facilitate dynamic simula-

tions. The effect of the stretching rigidity constant on
obtained dynamic properties of the model is also closely

Es 5
h
2 ON21

i51
(li 2 l0)2. (2.1)

examined in this work.
Details of our computational procedure are presented,

along with discussions of parameter choices. Model details The choice of the stretching force constant, h, must balance
are assessed through comparisons of results to equilibrium computational requirements with realized deviations of
simulations for the same model, as well as to available the bond.
experimental data (translational diffusion coefficients). Ex- The elastic bending potential of the chain Eb is com-
cellent agreement is obtained for all equilibrium and dy- puted as
namic properties examined (e.g., end-to-end distance,
bending distributions, persistence length, and translational

Eb 5
g
2 ON22

i51
u2

i , (2.2)diffusion coefficients).
For generation of molecular trajectories, we rely on the

theoretical framework of the generalized Langevin equa-
where ui is the angular displacement of bond i relative totion used previously in the simplest form by Schlick et al.
bond i 1 1, and g is the bending rigidity constant. This[31, 26]. Here, we use the Brownian dynamics (diffusive)
parameter is related to the DNA persistence length p [11,regime to study the long-time motion of large-scale
15] and is determined by the procedure described by Frank-DNA systems.
Kamenetskii et al. [12], summarized for completeness inFollowing the description of our model in Section 2 and
Appendix A.a description of the simulation algorithms (integration and

The electrostatic intersegment interaction of our DNAMonte Carlo) in Section 3, we discuss in Section 4 the
chain is described by the Debye–Hückel (DH) potential.parameterizations of the stretching-rigidity constants and
In practice, a point charge, nl0 , is attributed to each vertexhydrodynamic bead radius, as well as the selection of the
and Ee is defined asdynamic algorithm and associated timestep. In Section 5,

simulation results are presented for the distribution func-
tion of end-to-end distance, translational diffusion con- Ee 5 O

j.i11

n2l2
0

D
exp(2krij)

rij
, (2.3)

stant, autocorrelation functions, and rotational diffusion
constant.

We emphasize that our focus in this work is a careful where n is the effective linear charge density, D is the
dielectric constant, rij is the distance between vertices iand detailed development of a macroscopic computational

model for dynamic simulations, addressing all issues of and j, and k is the inverse of the Debye length. The value
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n corresponds to the best approximation for the Poisson– For i 5 j, each 3 3 3 subblock is given by
Boltzmann solution for DNA, modeled as a charged cylin-
der by the DH potential [34]; see references [30] and [38],

Dij 5
kBT
6fha

I333 . (2.9)for example, for specific values. The Debye length is
taken as

For i ? j, in the case of nonoverlapping beads (rij . 2a),
we have

rD 5 1/k 5 !DkBT
8fe2cs

, (2.4)

Dij 5
kBT

8fhrij
FSI333 1

rij rij

r2
ij
D1

2a2

r2
ij
S1

3
I333 2

rij rij

r2
ij
DG,where cs is the molar salt concentration of monovalent

ions. In this work, we set cs 5 0.01 M, D 5 80 (aque- (2.10)
ous medium), and n is set according to Ref. [38]: n 5
0.243e/A, where e is the charge of an electron. At room and for overlapping beads
temperature (T 5 298 K), the corresponding value of rD

is 3.07 nm. Additional torsional and torsional/bending
terms are necessary for closed circular DNA (see [17] for Dij 5

kBT
6fha FS1 2

9
32

rij

aD I333 1
3
32

rij rij

arij
G. (2.11)

example); they are not used in the current work.
To associate hydrodynamic properties for our DNA

In the expression above, rij is the three-dimensional dis-model, we place virtual beads of radius a and mass m at
tance vector between beads i and j, and h is the viscosityeach vertex of our model chain. The generalized Langevin
of the solvent. In the simulations reported here we use theequation of translational motion can be expressed as
nonoverlapping beads case, except for the calibration work
described in connection with the hydrodynamic radius.

mv̇i 5 2ON
j51

jij ? vi 1 Fi 1 ON
j51

aij ? fj , 1 # i # N, (2.5)

3. SIMULATION ALGORITHMS AND PERFORMANCE

where vi is the velocity of the ith bead, Fi is the sum of 3.1. Monte Carlo
interparticle forces acting on bead i, and o j aij ? fj repre-

We first describe the Metropolis Monte Carlo (MC)sents the randomly fluctuating force. The translational fric-
procedure to simulate equilibrium conformational distri-tion tensor, jij , is connected to stochastic forces via
butions of linear DNA chains. These results are later com-
pared to those generated by our dynamic simulations.

jij 5
1

kBT O
l

ail ? aT
lj . (2.6) Two types of perturbation moves are used (see Fig. 1).

Move (a) is local: one vertex (bead) is randomly selected
and a random displacement r is applied. The random vector

The friction tensor is also related to the translational diffu- is uniformly distributed in the space, and its length is in
sion tensor the range of [0, d0

1] (where the upper bound d0
1 is deter-

mined by the acceptance ratio).
Move (b) is global. After a random vertex is selected,

Dij 5
kBT
jij

, (2.7)
a rotation of the shorter part of the chain with respect to
a random axis which passes through the selected vertex is
applied. The orientation of the axis is uniformly distributedwhere Dij can be defined by the Rotne–Prager [27] hydro-
in space, and the rotation angle applied for the move isdynamic interaction tensor. For clarity, we use D to denote
uniformly distributed in the range of [0, d0

2], where d0
2 isthe 3N 3 3N translational diffusion matrix. This symmetric

the upper bound determined by the acceptance ratio.configuration-dependent matrix can be written as a collec-
The probability of accepting a trial conformation is ob-tion of 3 3 3 subblock matrices Dij for each pair of particles

tained by applying the standard rules of Metropolis et al.(i and j):
[23]. Namely, if the total potential energy of the trial con-
formation, Enew , is lower than that of the previous confor-
mation, Eold , the trial conformation was accepted. If
Enew . Eold , the probability of acceptance of the trial con-

D 5 1
D11

D21

D12

D22

? ?

? ?

D1N

D2N

? ? ? ? ?

DN1 DN2 ? ? DNN

2. (2.8) formation is made equal to pacc 5 exp[(Eold 2 Enew]/kB T).
In practice this is accomplished by comparing a random
number x (uniformly distributed in [0, 1]) with pacc ; if x .
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where Dn is the translational diffusion matrix and Fn is the
collective vector of interparticle forces, as defined above.
The random force, Rn, is generated at each step from a
Gaussian distribution of mean zero and variance

kRnRn9l 5 2Dn Dtdnn9 , (3.2)

where dnn9 is the Kronecker delta symbol. We follow the
procedure described in Ref. [10] to generate the compo-
nents of R. This involves setting R to a linear combination
of 3N normal random deviates. The computational com-
plexity of this task is of order (3N)3.

The second-order algorithm was developed and applied
by Iniesta and Garcia de la Torre for Trumbell dynamics
[18] and also used by Chirico and Langowski for a DNA
model [6, 7]. This scheme generates xn11 in two steps. First,
Eq. (3.1) is used to generate an auxiliary position vector,
x̃n11. Second, the following formula is used to generate the
new position vector

xn11 5 xn 1
1
2

Dt
kB T SDn ? Fn 1 D̃n11 ? F̃n11D 1 R̃n11.

kR̃n11R̃n11l 5 (Dn 1 D̃n11) Dt, kR̃n11l 5 0, (3.3)

where D̃n11 and F̃n11 are calculated using the values of
x̃n11. This algorithm requires approximately twice the CPU

FIG. 1. Two types of Monte Carlo moves: (a) local, random bead time as the first-order scheme.
displacement and (b) global, random axis rotation.

Both algorithms are based on the assumption that the
motions of interest occur on a time scale much larger than
the momentum relaxation time, i.e., Dt @ mDii /kB T 5

pacc , the new conformation is accepted, but otherwise the m/(6fha), where Dii is the ith diagonal entry of D, and m
old conformation is recounted. The combined protocol (for is the mass of the bead. In our case, when all bond lengths
using both moves) is calibrated (i.e., setting d0

1 and d0
2) so are l0 5 5 nm and the hydrodynamic radius of a bead is

that the acceptance ratio of either of the moves is around a 5 1.78 nm, this lower bound for the timestep is 0.5 ps.
50%, and the probability of selecting the two types of moves Timesteps larger than 10 ps were tested in this work.
is equal. To improve the computational performance, we suggest

modifying the second-order algorithm above by eliminat-
3.2. Dynamics ing the calculation of D̃ and R̃ in the second phase. That

is, the previous D and R are reused instead of formulatingThe generalized Langevin equation (Eq. (2.5)) provides
new values from Eq. (3.3). We found that this modificationthe reference for the generation of molecular trajectories.
yields the same accuracy while reducing the CPU time byIn the Brownian limit of small inertial contributions and
about 50%.sufficiently large timesteps (exceeding momentum relax-

ation time of the particles), the propagation can be simpli-
3.3. Computational Performancefied [10]. We tested two Brownian dynamics (BD) algo-

rithms with respect to accuracy and efficiency. The Simulations were performed in serial mode on a Silicon
common BD algorithm by Ermak and McCammon [10] Graphics Power Challenge computer with four 75 MHZ
(first-order) generates the new position vector for the IP21 processors. For a model chain of 41 beads (600 base
beads, xn11, from the current positions, xn, according to pairs), a simulation of one million MC iterations requires
the formula 11 min. In comparison, one million iterations of the Ermak

and McCammon algorithm with a timestep of 300 ps
(covering 0.3 ms) require 280 min. Our modified second-xn11 5 xn 1

Dt
kB T

Dn ? Fn 1 Rn, (3.1)
order scheme with a timestep of 600 ps requires 162 min
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to cover the same total simulation time. Some simulations ing general formula for the ith moment of bond length, l,
when only the stretching potential is considered:were also performed on a Silicon Graphics Power Chal-

lenge with eight 90 MHZ IP21 processors at Cornell The-
ory Center, which is faster than the 75 MHZ computer by
roughly 15%. klil 5

E li exp(2Es/kB T) dV

E exp(2Es/kB T) dV
4. MODEL PARAMETERS (4.2)

4.1. Bond Length and Rigidity Constant 5
Ey

0
exp(2h(l 2 l0)2/2kB T)4fli12 dl

Ey

0
exp(2h(l 2 l0)2/2kB T)4fl2 dl

.
For reference, we introduce the parameter k to denote

the number of beads per Kuhn length. Thus, k 5 N/m 5
2p/l0 , where p is the persistence length. There are two The above two equations can be solved numerically for
requirements in selecting the value of k. First, k must be various input values of h. Then by experimentation,
sufficiently large so that the electrostatic interaction of the condition in Eq. (4.1) gives approximately h 5
the discrete charges approximates well the interaction of 100 kB T/l2

0 and corresponds to the value chosen by Allison
continuously charged segments. Vologodskii and Cozza- [2]. This value of h yields in turn values for kll/l0 of 1.020.
relli [38] found that the condition of l0 , 2rD provides We checked that for this value of h and larger the relax-
a reasonable approximation. Since the static persistence ation times of the end-to-end distance were the same within
length of DNA is 50 nm, this condition gives a lower limit the accuracy of our calculations, about 10%. Furthermore,
of k 5 17 under salt concentration of 0.01 M. Second, the we also computed mean square end-to-end distance, kL2l,
chosen value of k must prevent chain crossings. from MC simulations. For a system of 3000-bp DNA, the

As a test, we checked the conservation of topology of simulation result of kL2l deviated only 5.0% from that of
a circular chain by calculating the Alexander polynomial a continuous wormlike chain. In dynamic simulations, the
at the point 21 [13]. We started the Brownian dynamics choice h 5 100 kB T/l2

0 allows us to use a timestep as large
simulation from a chain conformation corresponding to a as 500 ps (see below).
trefoil knot. For the short chain (600 base pairs) used, the
equilibrium fraction of knotted conformations is known to 4.2. Bead Radius
be extremely low [13], so any strand passage during the

The radius of each bead in our model, a, was chosen tocourse of dynamic simulations should unknot the DNA.
yield the same value of frictional coefficient as that ofWe found that the chain topology is unchanged for more
the well-studied model of touching beads. The model ofthan 106 steps if k is larger than 20. However, when k 5
touching beads predicts correct hydrodynamic properties10, for example, unknotting takes place in less than 1000
of DNA when a 5 1.59 nm [16]. Using the Monte Carlosteps. Thus, k 5 20 is appropriate to simulate the DNA
procedure we generated conformational ensembles of 105dynamics for the monovalent salt concentration of 0.01
states for touching (k 5 31.45) and nontouching beadsM. The corresponding bond length, l0 , is 5 nm, and the
(k 5 20), the latter corresponding to our model. Then wecorresponding bending rigidity constant is g 5 9.820 kB T
used each set to calculate the corresponding translational[12] (see Appendix A for a brief description). This force
frictional coefficient, f0 . This coefficient was calculated byconstant can be related to the conventional A values used
the direct solution of the Burgers–Oseen problem as pro-in other works, in the curvature-squared integral (A/2 e
posed by Zimm [39]. This procedure involves obtainingk2(s) ds), according to A 5 2.02 3 10219 erg ? cm if p 5
the ensemble average of the sedimenting velocity, kuzl, and50 nm.
then calculating f0 via the relationThe value of the stretching rigidity constant, h, is closely

related to the choice of timestep in the dynamic simula-
tions. Indeed, during one timestep the force acting on each f0 5 F/kuzl, (4.3)
bead should not change significantly. However, too small a
value for h would permit large deviations from equilibrium where F is the sedimenting force. Thus, the translation
lengths. A good compromise is obtained by choosing h so diffusion constant can be estimated from an equilibrium
that the resulting deviations from l0 satisfy simulation by assuming rigid-body motion. For complete-

ness, the procedure is summarized in Appendix B.
We found the value a 5 1.78 nm to give the same values

l0
5

Ïkl2l 2 kll2

l0
5 0.1. (4.1)

of frictional coefficient as the touching bead model. This
value was also independent of chain length. For reference,
the principle of equivalent chain volume suggested byThe expected value for s can be obtained from the follow-
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FIG. 3. Distribution functions of a representative bond length (nor-FIG. 2. The variance of the bond length, s 2, given as s 2/l0 , where l0

is the equilibrium bond value, as a function of timestep (Dt) for two BD malized), as obtained from the two BD algorithms for Dt 5 1000 ps: first-
order (open circles) and second-order (open triangles) versus MC (solidalgorithms, first-order [10] (open circles) and second-order [18, 6] (open

triangles). In these simulations, the DNA chain has 600 bp (two Kuhn line). The chain is 600 bp long. The trajectory lengths for BD are both
1.0 ms and, for MC, 4 million conformations were generated.statistical segments, each segment represented by k 5 20 links) and the

stretching constant h 5 100 kB T/l2
0 is used (Eq. (2.1)). Statistical errors

for both schemes are less than 0.2%.

3 shows the distribution functions of a representative bond
length for the two BD algorithms with Dt 5 1000 ps versus
the MC result. As Dt increases, we see that s 2 increasesde la Torre and Bloomfield [14] for choosing a gives the
in magnitude but, as expected, the second-order algorithmclose value of 1.85 nm.
is more accurate (smaller deviations). Although the CPU
time for one iteration of the second-order method is double

4.3. Dynamic Algorithms and Timestep
that of the first-order algorithm (compare Eq. (3.3) with
Eq. (3.1)), the former tolerates a Dt at least two timesWe tested two different BD algorithms as discussed in

Section 3.2 with various timesteps, Dt. Several local and larger for the same accuracy. Note, for example, from Fig.
2 that the error from the first-order scheme at Dt 5 300global properties of the chain, both equilibrium and dy-

namic, were assessed. These include distribution functions ps is about the same as the error realized by the second-
order BD method for Dt 5 1000 ps. For further efficiency,of bond length, bond angle, and end-to-end distance; the

translational diffusion coefficient; autocorrelation func- our modified version of the second-order algorithm was
used. This modification does not change the results signifi-tions for the end-to-end distance and bending angle; and

the rotational diffusion coefficient. We found the variance cantly (data not shown), but saves 50% of the CPU time.
This can be seen from Table I, which shows the correspond-of the bond length, s 2, to be most sensitive to Dt. This

is expected since the stretching potential has the highest ing CPU time for the three algorithms.
For most calculations in this work, we used our modifiedmotion frequency in our model.

Figure 2 shows the dependence of s 2 (normalized) on second-order algorithm with a timestep of 600 ps. Less
than 2% difference was found for the average value of theDt for the first and second-order BD algorithms, and Fig.

TABLE I

CPU Time for Different BD Algorithms for Covering 60 Microseconds

Number First-Order Second-Order Modified Second-Order
Beads/Base Pairs (min) (min) (min) Speedup Ratio

41/600 56.0 54.9 32.8 1.67
68/1010 173.2 171.4 99.7 1.72

101/1500 437.6 435.3 249.4 1.75

Note. A timestep of 300 ps was used for the first-order scheme, with 600 ps for the second-order methods. The simulations were run on an SGI
Power Challenge computer with eight 90 MHZ IP21 processors in serial mode.
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TABLE II

Comparison of the Translational Diffusion Coefficients for
Different Lengths of DNA

DNA Length Dt DMC DExp

(bp) (31028 cm2/s) (31028 cm2/s) (31028 cm2/s)

300 16.94 6 0.11 16.47 6 0.02
367 14.79 6 0.12 15.00 6 0.02 15.8 6 0.47
762 8.78 6 0.15 8.74 6 0.01 9.05 6 0.11

1010 7.18 6 0.13 7.17 6 0.01 7.15 6 0.19
2311 4.11 6 0.12 3.98 6 0.01 4.56 6 0.13

Note. DExp denotes the experimental values for Ref. [25], while Dt and
DMC are the simulation value for BD and MC, respectively, as calculated
in this work. For each chain length, five different BD trajectories of
length of 0.6 ms were used, each with a different initial conformation. Each

FIG. 4. Comparisons of normalized distribution functions of the end- DMC was obtained from three different MC ensembles (each ensemble a
to-end distance obtained by MC (solid line) over 4 million steps and by selection of 105 conformations out of the total 106).
BD (open circles) covering 6 ms. A model chain with 41 beads is used
(600 bp) at the monovalent salt concentration of 0.01 M.

averaging. Figure 5 shows that there is a certain length
of time that provides the best accuracy, around 1000Dt.
Statistical errors were also computed from five differentend-to-end distance when smaller values of Dt were used.
trajectories differing in the initial conformation and ran-Statistically significant differences in corresponding auto-
dom seed. The results are shown in Table II together withcorrelation functions of the end-to-end distance and rota-
the corresponding values from MC simulation, DMC, andtional diffusion coefficient were not observed with this
displayed in Fig. 6 along with the experimental results ofprotocol.
references [22] and [25]. The DMC values were obtained by
using Einstein’s relation of kB T/f0 , where f0 is the frictional
coefficient (see Section 4.2). Although there is a very good5. SOME SIMULATION RESULTS
agreement between results obtained by two different ap-
proaches, differences (1–3%) exceed statistical error (1%)5.1. End-to-End Distance Distribution
for short chains (300 and 367 bp). It is possible that the

Using the model described above we tested the efficiency rigid-body approximation in the calculations of DMC is
of our BD protocol to reproduce the equilibrium end-to- responsible for the difference.
end distance distribution as obtained by MC. Figure 4 From the comparison of our Dt values with the experi-
shows excellent agreement and demonstrates that it is pos- mental results (DExp) of Ref. [25] (Table II) and to the
sible to get statistically reliable results by BD simulations
for the model chain in this range of length (600 bp), espe-
cially with the speedup of the modified second-order algo-
rithm. MC is computationally more competitive (e.g., fac-
tor of 200 here), but inadequate for studying dynamic
properties.

5.2. Translational Diffusion Constant

In dynamic simulations, the translational diffusion con-
stant, Dt , can be estimated via a long trajectory simulation
by relating the mean square fluctuations of the system to
Dt according to the Einstein–Stokes equation

6tDt(t) 5 kuxcm(t) 2 xcm(0)u2l, (5.1)

FIG. 5. Convergence of the translational diffusion coefficient, Dt ,
where xcm(t) is the center-of-mass position vector of the from BD simulations (Eq. (5.1)) covering 0.6 ms for a model chain of

68 beads (1010 bp). Each trajectory differs by the starting conformation.DNA chain at time t, and the brackets k?l indicate ensemble
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where u(t) is the unit vector of the end-to-end distance at
time t. In practice, this formula can be used to compute
Dr by finding the slope of the slowest component of the
curve of 2lnkP2(u(t) ? u(0)l versus t. The decay of P2 is
well described by a single exponential only for short DNA,
and as the DNA length increases, this decay is generally
described by several exponential terms. Figure 7 shows
examples of semilog plots of the decay of P2 versus t for
a short DNA (300 bp, Fig. 7a) and for a longer DNA
system (1500 bp, Fig. 7b). We see that a single-exponent
approximation is accurate for the short chain only.

Figure 8 shows the results of the corresponding rota-
tional relaxation time, t 5 1/(6Dr), for different DNA
lengths. Because of the multiexponential nature of decay
for longer chains, the t values shown only correspond toFIG. 6. Comparison of the translational diffusion coefficient, Dt , for

different lengths of DNA. The filled circles represent the BD simulation the slowest motion of the polymer. Note that the error of
results with Dt 5 600 ps, as obtained from five different trajectories of Dr in Fig. 8 increases with DNA length. This might be due
length 0.6 ms for each chain length. The open circles denote the experi- to the complexity of the relaxation times. Hagerman andmental results of [22], with the solid line representing the best cubic fit

Zimm [16] showed that for short chains (L /p , 5), wheredescribed in [22]. The open triangles are the experimental results of [25]
L is the contour length and p is the persistence length,shown in Table II.
the coupling between components produces the largest
relaxation time; this slowest component corresponds to the

best fit of experimental results from [22] (Fig. 6), we also rotation about the longitudinal axis in the rigid-rod limit.
note a very good agreement for all the chain lengths used Their results for L /p , 5 (750 bp) are also shown in Fig.
(corresponding to the experimental systems). This lends 8 (dashed line in the inset). For the shortest DNA used in
confidence in the predictive capability of our model. the simulations, our data are in very good agreement with

that of Hagerman and Zimm. This agreement also shows
5.3. Rotational Diffusion Constant that the rigid-body approximation of [16] works well

for Dr .The rotational diffusion constant, Dr , can be estimated
via the following relation [2] involving the second-order

5.4. Autocorrelation Functions
Legendre polynomial, P2 ,

For a given time-dependent physical property A(t), the
normalized autocorrelation function is defined as [1]2lnkP2(u(t) ? u(0))l 5 6Drt, (5.2)

FIG. 7. Evolution of the logarithm of the second-order Legendre polynomial for two different DNA lengths, (a) 300 bp and (b) 1500 bp. For
each DNA length, results from two different trajectories are presented (open circles and filled triangles). For a 300-bp linear DNA, the decay of
the Legendre polynomial (see Eq. 5.2) is a single exponential (left), but for longer DNA the decay is multiexponential in form (right).
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length L is plotted in Fig. 10. This dependence can be
approximated by tL p L a, where a P 2 for small L , with
a decreasing for longer DNA. This finding is in qualitative
agreement with theoretical results [9], but further quantita-
tive comparisons are unwarranted due to the approximate
nature of the tL calculations.

The autocorrelation functions for ui cannot be fitted to
a single exponential (Fig. 9b), but a dependence on the
bead index, i, can be seen (Cuu is shown for i 5 1 and i 5
N/2 where N is the total number of beads). Clearly, the
behavior of the end beads of the DNA is expected to be
different than that of the central beads. These differences
are not very sensitive to L .

6. SUMMARYFIG. 8. Rotational relaxation time, tr , for different chain lengths (300,
360, 762, 1010, 1500, 2311) as obtained by BD. The filled circles are the

We have described the development of a macroscopicBD simulation results, and the solid line is its best cubic fit. Five different
computational procedure for simulating both equilibriumtrajectories (each of length of 0.6 ms) were performed, each with a

different starting conformation. The dashed line in the insert corresponds (from thermal ensembles) and dynamic properties of long
to results of Ref. [16] (obtained as tBRc (exact)). linear DNA. Our model combines features of the standard

wormlike chain model—used extensively for simulating
equilibrium properties of linear and supercoiled DNA by
Monte Carlo—with a bead framework, used historicallycAA(t) 5

kA(t) ? A(0)l 2 kAl2

s 2
A

, (5.3)
for Brownian simulations of polymers with hydrodynamics.
We have added stretching and electrostatic potentials to
make the model applicable to long DNA.where s 2

A is the variance of A. We computed the autocorre-
lation functions for L and u, the end-to-end distance and To test the simulation protocol and to select appropriate

parameters and algorithms, we explored in detail thethe bending angle, respectively.
Figure 9 shows typical autocorrelation functions for L choices of the virtual bond length l0 (salt dependent), the

stretching constant (h), and the bead radius (a). We alsoand ui (i 5 1 and i 5 N/2) as obtained by BD for a 600-
bp DNA system. The autocorrelation function of L can compared several algorithms for Brownian dynamics and

assessed the accuracy obtained for different timesteps. Re-be fitted well to an exponential form of exp(2t/tL) (Fig.
9a). The dependence of tL (correlation time of L) on chain sults were presented for distributions of bond length and

FIG. 9. Autocorrelation functions of (a) the end-to-end distance and (b) the bending angle for a 300-bp DNA. The solid line in part (a) represents
the best fit to the form of exp(2t/tL) with tL 5 2.33 es. In part (b), Cuu is shown for two bead indices, i 5 1 (open circles), and i 5 N/2 (open triangles).
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5. Our BD results agree excellently with MC for the
equilibrium property of end-to-end distance distributions
(Fig. 4). MC is certainly very fast to propagate, but BD
offers dynamic information.

6. Our BD results for the translational diffusion con-
stant, Dt , agree very well with the experimental results,
DExp, for the DNA systems tested in the range of 367 to
2311 bp (Table II and Fig. 6). In addition, good agreement
between Dt and the MC result, DMC, is obtained. Still,
the small differences between Dt and DMC that exceed
statistical error might be due to the rigid-body approxima-
tion assumed in MC.

7. The decay of the logarithm of the second-order
Legendre polynomial (see Eq. 5.2) can be well described

FIG. 10. Relaxation time of end-to-end distance versus DNA length. by a single exponential for short chains (e.g., 300 bp), but
The BD simulation results are shown as filled circles along with the best multiexponential functions are needed to describe rota-
quadratic fit. Results were obtained from the same trajectories used for

tional motion of longer chains (e.g., 1500 bp) (Fig. 7). TheFig. 7.
rotational diffusion coefficients calculated for short chains
(less than 750 bp) agree very well with the results of [16]
obtained from a rigid-body approximation (Fig. 8).end-to-end distance (l and L2); translational diffusion con-

stant, Dt ; autocorrelation functions for L and selected 8. Our illustrative dynamic result for the autocorre-
angles u ; and rotational diffusion coefficient, Dr , with asso- lation function of L (Fig. 9a) shows a good fit to a decaying
ciated relaxation times. Both equilibrium and dynamic exponential function of form exp(2t/tL).
properties were compared to results of MC and experi-

9. Our computed autocorrelation for the bond anglement. Excellent agreement for our BD-generated results
ui depends on chain position, i, but is independent of chainwas demonstrated with respect to all available data.
length (Fig. 9b).In brief, we found the following.

The model has already been extended to treat closed1. Our choice for the virtual bond length (l0 5 5 nm)
circular DNA, where torsional motion and topological con-satisfies two requirements: larger than the value corre-
siderations are important [19]. Additions involve the tor-sponding to a touching-bead model, thereby making com-
sional and torsional/bending terms, modified propagationputational time manageable for long DNA, and sufficiently
scheme, and the treatment of the topological constraint ofsmall to approximate well the electrostatic interaction and
chain closure. These details, and interesting applicationsto prevent chain crossings.
to branching and site juxtaposition, will be reported

2. Our calibrated bead radius (1.78 nm) yields the shortly [20].
same frictional force as a touching-bead model and is close
to the value obtained from the principle of equivalent chain

APPENDIX A: BENDING RIGIDITY CONSTANTvolume [14].

3. The stretching potential of Eq. (2.1)—necessary The bending potential of our model chain is expressed
for dynamic simulations—affects the realized bond vari- in Eq. (2.2). Within this framework, when the number
ance (Fig. 2) as well as the timestep and simulation method of links, Nb , is sufficiently large, the end-to-end distance
used. A good compromise was found by setting the rigidity squared can be written as
constant, h, to 100 kB T/l2

0 .

4. Using the second-order BD method [18] gives
roughly the same accuracy in comparison to the first-order kL2l 5 Nbkll2 S1 1 kcos ul

1 2 kcos ulD, (A.1)
scheme for more than double the timestep (Fig. 2). How-
ever, since each timestep of the second-order scheme is
twice as expensive, our modification of the second-order where
method renders it more attractive (Table I). Namely, the
elimination of auxiliary computations yields a CPU gain
(with respect to the first-order method) that is essentially

kcos ul 5
Ef

0
cos u sin u exp(2gu2/2kB T) du

Ef

0
sin u exp(2gu2/2kB T) du

. (A.2)the timestep gain factor. Thus, we gain a factor of two
speedup by using double the timestep.
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Considering that the wormlike chain is a limiting case of Vz) following the substitution of Eq. (B.2) into Eq. (B.1).
Three additional relations can be added to the total sedi-our model chain, we can express Nb in terms of the number

of Kuhn segments, m, by the relation [36]: mentation force, F:

O
i

Fi 5 F. (B.3)Nb

m
5 k 5

1 1 kcos ul
1 2 kcos ul

. (A.3)

In our case, the x and y components of F are set to zero,Here k denotes the number of subsegments per Kuhn
while the z component was set to N, equivalent to a unitlength. By solving Eq. (A.2) and (A.3), the dependence
force in the z direction on each of the N beads. The fourthof g on k can be obtained. The obtained g is close to the
relation can be formulated from the fact that total torqueresult of pkB T/l0 used in [3, 5–7]. For example, when k 5
around the z axis is zero, yielding:20 and p 5 50 nm, the values obtained by two approaches

are 9.82 kB T and 10 kB T, respectively. However, as Frank- O
i

(yi Fix 2 xi Fiy) 5 0. (B.4)Kamenetskii et al. [12] showed, the above approach ap-
proximates a wormlike chain better in the range of small
k (e.g., k , 20). For any given conformation, we solve for the sedimenta-

tion velocity uz from Eqs. (B1), (B.2), and (B.3). The trans-
APPENDIX B: CHAIN HYDRODYNAMICS lational diffusional frictional coefficient, f0 , can then be

BY MONTE CARLO obtained as:

As Zimm showed [39], certain dynamic properties of
f0 5 F/kuzl. (B.5)molecules in an applied external flow can be calculated as

if their internal conformations are held fixed as far as the
By using Einstein’s equation, we obtain the translationlinear terms in the applied flow are concerned. To measure
diffusion coefficient as:sedimentation, it is thus possible to calculate the average

instantaneous force on any conformation of such molecules
as if they were rigid. Zimm further demonstrated that it D 5

kB T
f0

. (B.6)
is sufficient to consider a component of the rotation around
the sedimentation axis (z axis). Therefore, the motion of
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